Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity.
نویسندگان
چکیده
The zinc metalloprotease ZMPSTE24 plays a critical role in nuclear lamin biology by cleaving the prenylated and carboxylmethylated 15-amino acid tail from the C-terminus of prelamin A to yield mature lamin A. A defect in this proteolytic event, caused by a mutation in the lamin A gene (LMNA) that eliminates the ZMPSTE24 cleavage site, underlies the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Likewise, mutations in the ZMPSTE24 gene that result in decreased enzyme function cause a spectrum of diseases that share certain features of premature aging. Twenty human ZMPSTE24 alleles have been identified that are associated with three disease categories of increasing severity: mandibuloacral dysplasia type B (MAD-B), severe progeria (atypical 'HGPS') and restrictive dermopathy (RD). To determine whether a correlation exists between decreasing ZMPSTE24 protease activity and increasing disease severity, we expressed mutant alleles of ZMPSTE24 in yeast and optimized in vivo yeast mating assays to directly compare the activity of alleles associated with each disease category. We also measured the activity of yeast crude membranes containing the ZMPSTE24 mutant proteins in vitro. We determined that, in general, the residual activity of ZMPSTE24 patient alleles correlates with disease severity. Complete loss-of-function alleles are associated with RD, whereas retention of partial, measureable activity results in MAD-B or severe progeria. Importantly, our assays can discriminate small differences in activity among the mutants, confirming that the methods presented here will be useful for characterizing any new ZMPSTE24 mutations that are discovered.
منابع مشابه
Requirements for Efficient Proteolytic Cleavage of Prelamin A by ZMPSTE24
BACKGROUND The proteolytic maturation of the nuclear protein lamin A by the zinc metalloprotease ZMPSTE24 is critical for human health. The lamin A precursor, prelamin A, undergoes a multi-step maturation process that includes CAAX processing (farnesylation, proteolysis and carboxylmethylation of the C-terminal CAAX motif), followed by ZMPSTE24-mediated cleavage of the last 15 amino acids, incl...
متن کاملZinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia.
Mandibuloacral dysplasia (MAD; OMIM 248370) is a rare, genetically and phenotypically heterogeneous, autosomal recessive disorder characterized by skeletal abnormalities including hypoplasia of the mandible and clavicles, acro-osteolysis, cutaneous atrophy and lipodystrophy. A homozygous missense mutation, Arg527His, in the LMNA gene which encodes nuclear lamina proteins lamins A and C has been...
متن کاملFunctional consequences of mutations in the early growth response 2 gene (EGR2) correlate with severity of human myelinopathies.
The early growth response 2 gene ( EGR2 ) is a Cys2His2zinc finger transcription factor which is thought to play a role in the regulation of peripheral nervous system myelination. This idea is based partly on the phenotype of homozygous Krox20 ( Egr2 ) knockout mice, which display hypomyelination of the PNS and a block of Schwann cells at an early stage of differentiation. Mutations in the huma...
متن کاملTay-Sachs Disease in Two Iranian Identical Male Twins; A Case Report
Background Tay-Sachs disease is an autosomal-recessive lysosomal storage metabolic disorder. The typical symptoms of the disease include ataxia, muscle weakness, and mental disorders. The severity of the clinical symptom relies on the enzymatic activity of residual Hexosaminidase-A. Case Presentation</...
متن کاملELECTRONIC LETTER Compound heterozygous ZMPSTE24 mutations reduce prelamin A processing and result in a severe progeroid phenotype
H utchinson–Gilford progeria syndrome (HGPS; OMIM 176670) is an extremely rare but devastating disorder that mimics premature aging. Affected children appear normal at birth but typically develop failure to thrive in the first two years. Other features include alopecia, micrognathia, loss of subcutaneous fat with prominent veins, abnormal dentition, sclerodermatous skin changes, and osteolysis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 21 18 شماره
صفحات -
تاریخ انتشار 2012